時(shí)間:2021年05月17日 分類:免費(fèi)文獻(xiàn) 次數(shù):
《鳥分枝桿菌MAV-2052蛋白的生物信息學(xué)分析》論文發(fā)表期刊:《中國(guó)病原生物學(xué)雜志》;發(fā)表周期:2021年02期
《鳥分枝桿菌MAV-2052蛋白的生物信息學(xué)分析》論文作者信息:高婧華(1990-),女,云南人,在讀碩士研究生。主要研究方向:非結(jié)核分枝桿菌的感染與免疫。
【摘要】目的 應(yīng)用生物信息學(xué)分析軟件預(yù)測(cè)鳥分枝桿菌MAV-2052蛋白的結(jié)構(gòu)和功能。方法 利用在線uniprot蛋白數(shù)據(jù)庫(kù)、ProtParam蛋白分析網(wǎng)站、在線Protcale,TMHMM(TMHMM Server V 2.0)和SignalP 5.0,Softberry和PSORTII Server,以及SOPMA和SWISS-MODEL等生物信息學(xué)預(yù)測(cè)軟件對(duì)MAV-2052蛋白的理化性質(zhì)、疏水性分析、信號(hào)肽、跨膜區(qū)、亞細(xì)胞定位及二級(jí)結(jié)構(gòu)進(jìn)行分析預(yù)測(cè)并對(duì)其三級(jí)結(jié)構(gòu)進(jìn)行模型構(gòu)建;對(duì)蛋白磷酸化位點(diǎn)進(jìn)行預(yù)測(cè),運(yùn)用uniprot蛋白數(shù)據(jù)庫(kù)的Blast工具對(duì)氨基酸進(jìn)行比對(duì),采用MEGA-X軟件構(gòu)建進(jìn)化樹。結(jié)果 MAV-2052基因全長(zhǎng)933 bp,編碼310個(gè)氨基酸的蛋白質(zhì)。該蛋白與鳥分枝桿菌亞型起源于同一物種,與結(jié)核分枝桿菌的半胱氨酸合酶k,同源性較高。MAV-2052為穩(wěn)定的疏水性蛋白,無跨膜區(qū)、無信號(hào)肽;預(yù)測(cè)該蛋白亞細(xì)胞定位在細(xì)胞質(zhì)中,蛋白序列中存在13個(gè)絲氨酸磷酸化位點(diǎn),二級(jí)結(jié)構(gòu)以r螺旋為主且有兩個(gè)結(jié)構(gòu)域;三級(jí)結(jié)構(gòu)模型顯示該蛋白可形成同源二聚體,但無其他配體結(jié)合空間位置。MAV-2052蛋白為半胱氨酸合酶,屬于半胱氨酸合酶/半胱氨酸3合成酶家族,是調(diào)控鳥分枝桿菌生長(zhǎng)中的重要蛋白之一。結(jié)論 生物信息學(xué)預(yù)測(cè)鳥分枝桿菌MAV-2052為半胱氨酸合成酶,是調(diào)控細(xì)菌生長(zhǎng)的重要蛋白,可為鳥分枝桿菌的靶向治療提供新思路
【關(guān)鍵詞】鳥分枝桿菌;結(jié)構(gòu);功能;生物信息學(xué)分析
[ Abstract] Objective To use bioinformatic analysis software to predict the structure and function of the Mycobacteri um avium mav-2052 protein Methods The uniprot database online, the protein analysis website ProtParam, ProtScale online. TMHMM (TMHMM Server V 2.0). Softberrv. SienalP 5.0. PSORT II Server, SOPMA, and SWISS-MOD-El were used to predict biological information such as the physical and chemical properties and hydrophobicity of the mav-2052 protein, to analyze its signal peptides, transmembrane regions, and subcellular localization, to predict its sec ondary structure, and to model its tertiary structure. The website was used to predict the protein's phosphorylation sites, the Blast tool of the uniprot protein database was used to compare amino acids, and the software MEGA-X was used to construct an evolutionary tree. Results mav-2052 is a protein encoding 310 amino acids. It originates from the same species as M. avium subtypes and has is highly similar to cysteine svnthase K1 of M. tuberculosis. mav-2052 is a stable hydrophobic protein with no transmembrane regions and no signal peptides. The protein is predicted to be located in the cytoplasm, and there are 13 serine phosphorylation sites in the protein sequence. The protein's secondary structure is dominated by alpha helices and it has two domains. mav-2052 is a cysteine synthase that belongs to the cysteine synthase/cysteine beta synthase family, and it is an important protein for regulation of the growth of M. avium. Conclusion Bioinformatics predicted that the M. avium mav-2052 protein is a cysteine synthase. This protein plays an important role in regulating the growth of M. avium. These findings may provide new insights in targeted therapy for M. avium
[ Key words] Mycobacterium avium; structure; function: bioinformatic analysis
鳥分枝桿菌(Mycobacterium avium,MAV)屬于細(xì)胞內(nèi)寄生菌,是非結(jié)核分枝桿菌(nontuberculous mycobacteria,NTM)中的一種[1]。研究表明,在健康人中也能建立慢性MAV感染,且多種抗分枝桿菌的藥物治療效果不佳,即使延長(zhǎng)18~24個(gè)月的療程也無法將其徹底清除[2);另一方面,MAV的感染在免疫系統(tǒng)受損的個(gè)體中引起NTM感染事件越來越多,且尚未制定出有效根除MAV感染的藥物治療方案和預(yù)防MAV感染的疫苗[2],因此,研發(fā)有效的抗MAV的藥物及疫苗是當(dāng)務(wù)之急.MAV-2052是參與MAV致病的重要蛋白之一,其主要功能是調(diào)節(jié)宿主細(xì)胞氧化與抗氧化的平衡和影響1-半胱氨酸的生成。為進(jìn)一步了解MAV-2052的結(jié)構(gòu)和功能,本研究從蛋白序列查詢、理化性質(zhì)、多序列對(duì)比、疏水性分析、跨膜結(jié)構(gòu)、信號(hào)肽分析和亞細(xì)胞定位等對(duì)MAV-2052蛋白進(jìn)行生物信息預(yù)測(cè)和分析。
材料與方法
1數(shù)據(jù)資料的獲取
通過美國(guó)國(guó)家生物技術(shù)信息中心NCB數(shù)據(jù)庫(kù)對(duì)MAV-2052進(jìn)行序列分析;登陸Uniprot蛋白數(shù)據(jù)庫(kù)和NCBI網(wǎng)站,獲取MAV菌株MAV-2052蛋白的基因序列和氨基酸序列。鳥型分枝桿菌亞種(M.avium subsp)、海德堡分枝桿菌(M.heidelbergense)、結(jié)核分枝桿菌(M.tuberculosis)、新宿分枝桿菌(M.shinjukuense)、嗜血分枝桿菌(M.haemophilum)核苷酸序列和氨基酸序列也同樣從Uniprot蛋白數(shù)據(jù)庫(kù)和NCB網(wǎng)站獲取。
2生物信息學(xué)分析
運(yùn)用在線uniprot蛋白數(shù)據(jù)庫(kù)的Blast工具,將MAV-2052基因序列與同源性較高的核苷酸進(jìn)行比對(duì);比對(duì)后的氨基酸運(yùn)用MEGA-X構(gòu)建進(jìn)化樹;登錄在線ProtParam蛋白分析網(wǎng)站對(duì)MAV-2052蛋白進(jìn)行理化性質(zhì)分析;運(yùn)用Protcale對(duì)蛋白進(jìn)行疏水性分析;運(yùn)用TMHMM(TMHMM Server V 2.0)和Sig-
nalP 5.0對(duì)MAV-2052進(jìn)行跨膜和信號(hào)肽預(yù)測(cè);運(yùn)用Softberry和PSORT Il Sserver對(duì)MAV-2052細(xì)胞定位分析;利用SOPMA和SWISS-MODEL對(duì)MAV-2052蛋白進(jìn)行二、三級(jí)結(jié)構(gòu)預(yù)測(cè);對(duì)蛋白磷酸化位點(diǎn)進(jìn)行預(yù)測(cè)。
結(jié)果
1 MAV-2052基因的特征
GenBank 中MAV-2052基因的登錄號(hào)為ABK67788.1,基因又名:Cysk,基因序列全長(zhǎng)933 bp,編碼310個(gè)氨基酸的蛋白質(zhì)。
2 MAV-2052蛋白的同源性預(yù)測(cè)和進(jìn)化樹構(gòu)建
經(jīng)氨基酸序列比對(duì),鳥型分枝桿菌亞種(Mycobacterium avium subsp)、海德堡分枝桿菌、結(jié)核分枝桿菌、新宿分枝桿菌、嗜血分枝桿菌與MAV 104菌株MAV-2052蛋白的序列覆蓋區(qū)域分別是:100%、91%,88.4%,86.5%和84.8%。多重序列比對(duì)分析顯示,以上物種氨基酸之間的序列相似度較高(圖1)用MEGA-X軟件構(gòu)建系統(tǒng)進(jìn)化樹,結(jié)果見圖2。鳥型分枝桿菌亞種與MAV起源于同一物種,同源性較高。
鳥分枝桿菌MAV-2052蛋白的生物信息學(xué)分析
高婧華(1990-),女,云南人,在讀碩士研究生。主要研究方向:非結(jié)核分枝桿菌的感染與免疫。
【摘要】目的 應(yīng)用生物信息學(xué)分析軟件預(yù)測(cè)鳥分枝桿菌MAV-2052蛋白的結(jié)構(gòu)和功能。方法 利用在線uniprot蛋白數(shù)據(jù)庫(kù)、ProtParam蛋白分析網(wǎng)站、在線Protcale,TMHMM(TMHMM Server V 2.0)和SignalP 5.0,Softberry和PSORTII Server,以及SOPMA和SWISS-MODEL等生物信息學(xué)預(yù)測(cè)軟件對(duì)MAV-2052蛋白的理化性質(zhì)、疏水性分析、信號(hào)肽、跨膜區(qū)、亞細(xì)胞定位及二級(jí)結(jié)構(gòu)進(jìn)行分析預(yù)測(cè)并對(duì)其三級(jí)結(jié)構(gòu)進(jìn)行模型構(gòu)建;對(duì)蛋白磷酸化位點(diǎn)進(jìn)行預(yù)測(cè),運(yùn)用uniprot蛋白數(shù)據(jù)庫(kù)的Blast工具對(duì)氨基酸進(jìn)行比對(duì),采用MEGA-X軟件構(gòu)建進(jìn)化樹。結(jié)果 MAV-2052基因全長(zhǎng)933 bp,編碼310個(gè)氨基酸的蛋白質(zhì)。該蛋白與鳥分枝桿菌亞型起源于同一物種,與結(jié)核分枝桿菌的半胱氨酸合酶k,同源性較高。MAV-2052為穩(wěn)定的疏水性蛋白,無跨膜區(qū)、無信號(hào)肽;預(yù)測(cè)該蛋白亞細(xì)胞定位在細(xì)胞質(zhì)中,蛋白序列中存在13個(gè)絲氨酸磷酸化位點(diǎn),二級(jí)結(jié)構(gòu)以r螺旋為主且有兩個(gè)結(jié)構(gòu)域;三級(jí)結(jié)構(gòu)模型顯示該蛋白可形成同源二聚體,但無其他配體結(jié)合空間位置。MAV-2052蛋白為半胱氨酸合酶,屬于半胱氨酸合酶/半胱氨酸3合成酶家族,是調(diào)控鳥分枝桿菌生長(zhǎng)中的重要蛋白之一。結(jié)論 生物信息學(xué)預(yù)測(cè)鳥分枝桿菌MAV-2052為半胱氨酸合成酶,是調(diào)控細(xì)菌生長(zhǎng)的重要蛋白,可為鳥分枝桿菌的靶向治療提供新思路
【關(guān)鍵詞】鳥分枝桿菌;結(jié)構(gòu);功能;生物信息學(xué)分析
[ Abstract] Objective To use bioinformatic analysis software to predict the structure and function of the Mycobacteri um avium mav-2052 protein Methods The uniprot database online, the protein analysis website ProtParam, ProtScale online. TMHMM (TMHMM Server V 2.0). Softberrv. SienalP 5.0. PSORT II Server, SOPMA, and SWISS-MOD-El were used to predict biological information such as the physical and chemical properties and hydrophobicity of the mav-2052 protein, to analyze its signal peptides, transmembrane regions, and subcellular localization, to predict its sec ondary structure, and to model its tertiary structure. The website was used to predict the protein's phosphorylation sites, the Blast tool of the uniprot protein database was used to compare amino acids, and the software MEGA-X was used to construct an evolutionary tree. Results mav-2052 is a protein encoding 310 amino acids. It originates from the same species as M. avium subtypes and has is highly similar to cysteine svnthase K1 of M. tuberculosis. mav-2052 is a stable hydrophobic protein with no transmembrane regions and no signal peptides. The protein is predicted to be located in the cytoplasm, and there are 13 serine phosphorylation sites in the protein sequence. The protein's secondary structure is dominated by alpha helices and it has two domains. mav-2052 is a cysteine synthase that belongs to the cysteine synthase/cysteine beta synthase family, and it is an important protein for regulation of the growth of M. avium. Conclusion Bioinformatics predicted that the M. avium mav-2052 protein is a cysteine synthase. This protein plays an important role in regulating the growth of M. avium. These findings may provide new insights in targeted therapy for M. avium
[ Key words] Mycobacterium avium; structure; function: bioinformatic analysis
鳥分枝桿菌(Mycobacterium avium,MAV)屬于細(xì)胞內(nèi)寄生菌,是非結(jié)核分枝桿菌(nontuberculous mycobacteria,NTM)中的一種[1]。研究表明,在健康人中也能建立慢性MAV感染,且多種抗分枝桿菌的藥物治療效果不佳,即使延長(zhǎng)18~24個(gè)月的療程也無法將其徹底清除[2);另一方面,MAV的感染在免疫系統(tǒng)受損的個(gè)體中引起NTM感染事件越來越多,且尚未制定出有效根除MAV感染的藥物治療方案和預(yù)防MAV感染的疫苗[2],因此,研發(fā)有效的抗MAV的藥物及疫苗是當(dāng)務(wù)之急.MAV-2052是參與MAV致病的重要蛋白之一,其主要功能是調(diào)節(jié)宿主細(xì)胞氧化與抗氧化的平衡和影響1-半胱氨酸的生成。為進(jìn)一步了解MAV-2052的結(jié)構(gòu)和功能,本研究從蛋白序列查詢、理化性質(zhì)、多序列對(duì)比、疏水性分析、跨膜結(jié)構(gòu)、信號(hào)肽分析和亞細(xì)胞定位等對(duì)MAV-2052蛋白進(jìn)行生物信息預(yù)測(cè)和分析。
材料與方法
1數(shù)據(jù)資料的獲取
通過美國(guó)國(guó)家生物技術(shù)信息中心NCB數(shù)據(jù)庫(kù)對(duì)MAV-2052進(jìn)行序列分析;登陸Uniprot蛋白數(shù)據(jù)庫(kù)和NCBI網(wǎng)站,獲取MAV菌株MAV-2052蛋白的基因序列和氨基酸序列。鳥型分枝桿菌亞種(M.avium subsp)、海德堡分枝桿菌(M.heidelbergense)、結(jié)核分枝桿菌(M.tuberculosis)、新宿分枝桿菌(M.shinjukuense)、嗜血分枝桿菌(M.haemophilum)核苷酸序列和氨基酸序列也同樣從Uniprot蛋白數(shù)據(jù)庫(kù)和NCB網(wǎng)站獲取。
2生物信息學(xué)分析
運(yùn)用在線uniprot蛋白數(shù)據(jù)庫(kù)的Blast工具,將MAV-2052基因序列與同源性較高的核苷酸進(jìn)行比對(duì);比對(duì)后的氨基酸運(yùn)用MEGA-X構(gòu)建進(jìn)化樹;登錄在線ProtParam蛋白分析網(wǎng)站對(duì)MAV-2052蛋白進(jìn)行理化性質(zhì)分析;運(yùn)用Protcale對(duì)蛋白進(jìn)行疏水性分析;運(yùn)用TMHMM(TMHMM Server V 2.0)和Sig-
nalP 5.0對(duì)MAV-2052進(jìn)行跨膜和信號(hào)肽預(yù)測(cè);運(yùn)用Softberry和PSORT Il Sserver對(duì)MAV-2052細(xì)胞定位分析;利用SOPMA和SWISS-MODEL對(duì)MAV-2052蛋白進(jìn)行二、三級(jí)結(jié)構(gòu)預(yù)測(cè);對(duì)蛋白磷酸化位點(diǎn)進(jìn)行預(yù)測(cè)。
結(jié)果
1 MAV-2052基因的特征
GenBank 中MAV-2052基因的登錄號(hào)為ABK67788.1,基因又名:Cysk,基因序列全長(zhǎng)933 bp,編碼310個(gè)氨基酸的蛋白質(zhì)。
2 MAV-2052蛋白的同源性預(yù)測(cè)和進(jìn)化樹構(gòu)建
經(jīng)氨基酸序列比對(duì),鳥型分枝桿菌亞種(Mycobacterium avium subsp)、海德堡分枝桿菌、結(jié)核分枝桿菌、新宿分枝桿菌、嗜血分枝桿菌與MAV 104菌株MAV-2052蛋白的序列覆蓋區(qū)域分別是:100%、91%,88.4%,86.5%和84.8%。多重序列比對(duì)分析顯示,以上物種氨基酸之間的序列相似度較高(圖1)用MEGA-X軟件構(gòu)建系統(tǒng)進(jìn)化樹,結(jié)果見圖2。鳥型分枝桿菌亞種與MAV起源于同一物種,同源性較高。
3 MAV-2052蛋白序列信息及理化性質(zhì)MAV104菌株MAV-2052蛋白相對(duì)分子質(zhì)量為32.346 21 × 10",理論等電點(diǎn)為4.86,其中丙氨酸(Ala)、緬氨酸(Val)、甘氨酸(Gly)的含量較高,分別占氨基酸總量的14.2%、10.6%和9.7%。帶負(fù)電荷的氨基酸殘基數(shù)目(天冬氨酸+谷氨酸)為37個(gè),帶正電荷氨基酸殘基(精氨酸+賴氨酸)為27個(gè)。不穩(wěn)定系數(shù)為27.74,為穩(wěn)定蛋白。脂肪系數(shù)為105.45,親水性平均系數(shù)為0.214,為疏水性蛋白。
4 MAV-2052蛋白疏水性
MAV-2052蛋白282位谷氨酸(E)處疏水性得分較低(-2.033),親水性較強(qiáng);81位亮氨酸(L)處的疏水性得分較高(2.811),疏水性較強(qiáng)。疏水性分析顯示,MAV-2052含有多個(gè)親水性區(qū)域和疏水性區(qū)域,其分布聚集不明顯(圖3)。
5 MAV-2052的跨膜區(qū)、信號(hào)肽及亞細(xì)胞定位運(yùn)用TMHMM Server V 2.0預(yù)測(cè)MAV-2052無跨膜區(qū)(圖4),運(yùn)用signalP 5.0可以區(qū)分3種信號(hào)肽:1)Sec/SPI:“標(biāo)準(zhǔn)”分泌信號(hào)肽,由Sec轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)并被信號(hào)肽酶1(Lep)切割;2)Sec/SPIl:由Sec轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)并被信號(hào)肽酶11(Lsp)切割的脂蛋白信號(hào)肽;3)Tat/SPI:由Tat轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)并被信號(hào)肽酶1(Lep)切割的Tat信號(hào)肽。預(yù)測(cè)結(jié)果顯示該蛋白無信號(hào)肽,可推斷不是分泌蛋白(圖5),Softberry預(yù)測(cè)該蛋白亞細(xì)胞定位在細(xì)胞質(zhì)中并通過PSORT II Server驗(yàn)證。
6 MAV-2052蛋白二級(jí)結(jié)構(gòu)及結(jié)構(gòu)域的預(yù)測(cè)和分析MAV-2052氨基酸序列中,-螺旋(Alpha helix)
結(jié)構(gòu)有114個(gè)氨基酸,占二級(jí)結(jié)構(gòu)總數(shù)的36.77%;p-折疊(extended strand)結(jié)構(gòu)有61個(gè)氨基酸,占總數(shù)的19.68%;p-轉(zhuǎn)角結(jié)構(gòu)有35個(gè)氨基酸,占總數(shù)的11.29%;無規(guī)則卷曲(random coil respectively)結(jié)構(gòu)有100個(gè)氨基酸,占總數(shù)的32.26%(圖6),預(yù)測(cè)MAV-2052蛋白質(zhì)有兩個(gè)結(jié)構(gòu)域,分別是位于7-293氨基酸保守蛋白家族的PLPdep和位于7-293氨基酸的PALP家族(圖7)。
7 MAV-2052三級(jí)結(jié)構(gòu)預(yù)測(cè)
MAV-2052三級(jí)結(jié)構(gòu)的模型構(gòu)建見圖8,可形成同源二聚體,但沒有和其他配體結(jié)合的空間位置,與Cysteine synthase A(2q3d.1.B)的相似度為88.39%。
8 MAV-2052蛋白磷酸化位點(diǎn)
預(yù)測(cè)MAV-2052蛋白有13個(gè)絲氨酸(Ser)磷酸化位點(diǎn):7個(gè)蘇氨酸(Thr)磷酸化位點(diǎn),分別在93,97116,157,158,166,302位氨基酸處:139,299兩處有酪氨酸(Tyr)磷酸化位點(diǎn)(圖9)
討論
近年來MAV感染率呈不斷上升趨勢(shì),研發(fā)有效
的抗MAV的藥物對(duì)于抗MAV感染至關(guān)重要,尋找新藥靶點(diǎn)是當(dāng)務(wù)之急。本研究采用生物信息學(xué)方法預(yù)測(cè)分析MAV-2052是存在于細(xì)胞質(zhì)中的一種半胱氨酸合酶,屬于半胱氨酸合酶/半胱氨酸B合成酶家族,是MAV重要的蛋白之一。該蛋白為疏水性蛋白,無信號(hào)肽,無跨膜區(qū),且預(yù)測(cè)定位于細(xì)胞質(zhì)中,是一種非分泌性蛋白,主要功能是調(diào)節(jié)宿主細(xì)胞氧化應(yīng)激反應(yīng)和影響1-半胱氨酸的生成。多重序列分析顯示其與鳥分枝桿菌亞型氨基酸序列完全相同,與結(jié)核分枝桿菌的半胱氨酸合酶k,(cysteine synthase.Cysk,)的同源性較高。
MAV-2052蛋白具有催化活性:硫化物與0-乙酰基-1-絲氨酸在此酶的作用下生成醋酸鹽和1-半胱氨酸。而同一條或不同多肽鏈的兩個(gè)L-半胱氨酸殘基間以二硫鍵(-s-s)連接,在人體內(nèi)主要是保持蛋白質(zhì)的穩(wěn)定性[。同樣也為發(fā)揮細(xì)胞正常的功能,抵御宿主細(xì)胞施加的氧化應(yīng)激提供理論依據(jù)[5
在氧化應(yīng)激中,一方面在半胱氨酸水平上序列比對(duì)結(jié)果顯示,MAV-2052是與結(jié)核分枝桿菌有88.4%相似性的半胱氨酸合酶A蛋白]。在與MAV-2052蛋白同源性較高的結(jié)核分枝桿菌中已被證實(shí)氧化平衡與L-半胱氨酸的可用性有關(guān)[。在結(jié)核分枝桿菌感染宿主過程中,1-半胱氨酸不僅是抵抗宿主巨噬細(xì)胞吞噬后釋放活性氧(Reactive oxygen species,ROS)的第一道防線[1],它還能修復(fù)被ROS破壞分枝桿菌蛋白的鐵硫中心[2],而且還是合成病原菌對(duì)抗氧化應(yīng)激和在宿主中長(zhǎng)期生存的關(guān)鍵[,有研究表明,致病菌能利用高活性的酶幫助其躲避宿主的防御機(jī)制,從而促進(jìn)細(xì)菌感染的成功建立。此外,細(xì)胞宿主的防御機(jī)制還包括ROS的爆發(fā),這可能導(dǎo)致過度氧化,然而這些高活性酶通過使用包括催化和非催化1-半胱氨酸的機(jī)制,設(shè)法避免不可逆轉(zhuǎn)的失活t,當(dāng)宿主中產(chǎn)生ROS時(shí),結(jié)核分枝桿菌能夠通過硫氧還蛋白和放線硫醇中關(guān)鍵的L-半胱氨酸的硫醇基團(tuán)來抵消宿主來源的活性氧中間體(reactive oxygen intermediate.ROT)[1],放線硫醇可增強(qiáng)細(xì)胞內(nèi)ROS的清除作用,使細(xì)胞活力提高[2),其1-半胱氨酸殘基的疏基又可被親電基團(tuán)烷基化,并被ROS氧化[10],在氧化還原機(jī)制中證實(shí)增加1-半胱氨酸的供應(yīng)可防御ROS的產(chǎn)生對(duì)病原菌的破壞[],另一方面證實(shí)用抑制劑與結(jié)核分枝桿菌的Cysk,結(jié)合可減少L-半胱氨酸的生物合成從而破壞病原菌[1]。以上機(jī)制在結(jié)核分枝桿菌中已被證實(shí),由于MAV-2052蛋白與結(jié)核分枝桿菌具有較高同源性,且與CysK,的底物和生成的L-半胱氨酸產(chǎn)物也完全相同,因此預(yù)測(cè)可通過從頭抑制L-半胱氨酸的生成來增加氧化應(yīng)激中產(chǎn)生的ROS對(duì)MAV的破壞,從而作為新的抗菌藥的目標(biāo)。另一方面,活性氧的產(chǎn)生破壞了抗氧化的平衡引起細(xì)胞凋亡(。細(xì)胞凋亡是宿主對(duì)病原菌防御機(jī)制的一個(gè)重要反應(yīng),涉及多種成分和高度協(xié)調(diào)的信號(hào)轉(zhuǎn)導(dǎo)[5]。許多細(xì)胞內(nèi)細(xì)菌利用的是宿主的細(xì)胞器,在使細(xì)胞凋亡時(shí)主要通過調(diào)節(jié)宿主的細(xì)胞器來實(shí)現(xiàn)[1).Lee等[報(bào)道重組的MAV-2052蛋白在ROS的生成中以Caspase的方式誘導(dǎo)了巨噬細(xì)胞的凋亡。已被證實(shí)的凋亡途徑是使線粒體跨膜點(diǎn)位喪失,BAX線粒體轉(zhuǎn)位,細(xì)胞色素c釋放從而誘導(dǎo)細(xì)胞的凋亡。細(xì)胞色素c的釋放使Caspase活化[17,當(dāng)Caspase一旦被活化,從而啟動(dòng)相關(guān)蛋白酶的級(jí)聯(lián)反應(yīng)[13],當(dāng)上游的Caspase-9活化通過一些途徑使宿主細(xì)胞核的核孔損傷并使下游的Caspase-3也進(jìn)入細(xì)胞核,使DNA降解,從而加速宿主細(xì)胞的凋亡[2-13],本研究預(yù)測(cè)MAV-2052有多個(gè)磷酸化位點(diǎn),說明該蛋白在對(duì)宿主細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)也存在調(diào)控作用,其中ASK-JNK通路是MAV-2052在ROS介導(dǎo)的湖亡途徑中的主要通路)。而線粒體是細(xì)胞內(nèi)源性凋亡發(fā)生多種關(guān)鍵事件的中心細(xì)胞器,可改變促凋亡和抗凋亡分子的活性[13]。高濃度的ROS還會(huì)促進(jìn)內(nèi)源性中內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)(endoplasmic re-
ticulum stress,ERS)的凋亡信號(hào)通路。當(dāng)ERS激活時(shí),線粒體內(nèi)的ROS也會(huì)增加,導(dǎo)致線粒體的膜電位穩(wěn)態(tài)被破壞,通透性增加、線粒體中的促凋亡因子改變并釋放,從而引起細(xì)胞凋亡[])。增加活性氧的產(chǎn)生可引起宿主抗氧化系統(tǒng)失衡導(dǎo)致細(xì)胞損傷和細(xì)胞器功能的喪失,從而促進(jìn)MAV-2052蛋白的損傷加快細(xì)胞凋亡來殺傷MAViu本研究采用生物信息學(xué)方法預(yù)測(cè)分析MAV-2052為半胱胺酸合成酶,在MAV感染中調(diào)控1-半胱氨酸的生成和宿主細(xì)胞的氧化應(yīng)激反應(yīng)能控制其生長(zhǎng)可為MAV感染的靶向治療提供新思路。
【參考文獻(xiàn)】
[1]Yang D,F(xiàn)u X.He S,et al.Analysis of differentially expressed proteins in Mycobacterium avium-infected macrophages comparing with Mycobacterium tuberculosisnfected macrophages[J7.Biomed Res Int,2017(2017):5103803.
[2]Kannan N,Lai Y P,Haug M,et al.Genetic Variation/evolutionand differential host responses resulting from in-patient adaptation of Mycobacterium avium[J].Infect Immun,2019,87(4):e00323-18.
[3] Kannan N,Haug M,Steigedal M,et al.Mycobacterium smeg matis Vaccine vector elicits CD4+ Th17 and CD8+ Tc17 T cells with therapeutic potential to infections with Mycobacterium avium[J7.Front Immunol.2020(11):1116-1131.
[4]Chu C.Erickson PR.Lundeen RA,et al.Photochemical and nonphotochemical transformations of cysteine with dissolved organic matter[J7.Environ Sci Technol.2016,50(12):6363-6373
[5] Schnell R, Sriram D, Schneider G. Pyridoxal-phosphate dependent mycobacterial cysteine synthases: structure, mechanism and potential as drug targets[J]. Biochim Biophys Acta, 2015, 1854(9):1175-1183.
[6] Lee KI. Choi HG, Son Y J, et al. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4[J]. Apoptosis , 2016,21 (4):459-472.
[7] Steiner EM, Both D, Lossl P, et al. CysK2 from Mycobacterium tuberculosis is an O-phospho-L-serine-dependent S-sulfocysteine synthase[J7. J Bacteriol, 2014, 196(19):3410-3420.
[8] Brunner K, Steiner EM, Reshma RS, et al. Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis [J]. Bioorg Med Chem Lett, 2017, 27(19):4582-4587.
[97 Brunner K, Maric S, Reshma RS, et al. Inhibitors of the cysteine synthase CysM with antibacterial potency against dormant Mycobacterium tuberculosis[J]. J Med Chem, 2016,59 (14): 6848-6859
[10] Bertoldo JB, Terenzi H, Huttelmaier S, et al. Posttranslational chemical mutagenesis: to reveal the role of noncatalytic cysteine residues in pathogenic bacterial phosphatases[J].Biochemistry,2018.57(43):6144-6152.
[11] Burns-huang K,Mundhra S.Mycobacterium tuberculosis cysteine biosynthesis genes mec+-cysO-cysM confer resistance to clofazimine1.Tuberculosis(Edinb).2019(115):63-66.
[12]Sun WJ,Wang L.Liu HH,et al.Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum[J7.Metab Eng,2019(56):97-110
[13]Jean KV,Poyraz O,Saxena S,et al.Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulf-hydrylase(CysK1)using virtual high-throughput screening[J].Bioorg Med Chem Lett,2013.23(5):1182-1186
[14]李興太,張春英,仲偉利,等,活性氧的生成與健康和疾病關(guān)系研究進(jìn)展[J].食品科學(xué),2016,37(13):257-270.
[15]LinJ.Chang Q.Dai X,et al.Early secreted antigenic target of 6kDa of Mycobacterium tuberculosis promotes caspase-9/caspase3-mediated apoptosis in macrophages[J].Mol Cell Biochem,2019.457(1-2):179-189
[16]Lee J,Choi JA,Cho SN,et al.Mitofusin 2-deficiency suppresses Mycobacterium tuberculosis survival in macrophages[J].Cells,2019,8(11):1355-1368.
[17]李帥,張炳東,細(xì)胞凋亡途徑的研究進(jìn)展[J].山東醫(yī)藥,2017,57(37):103-106.
[18] 楊濤,費(fèi)振海,鐘興明.Caspase家族與細(xì)胞凋亡的研究進(jìn)展[J].浙江醫(yī)學(xué),2018,40(18):2083-2087
[19]Lee KI.Whang J,Choi HG,et al.Mycobacterium aviumMAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth[J].Sci Rep,2016(6):37804-37819.
[20]Chaudhari N,Talwar P,Parimisetty A,et al.A molecular web:endoplasmic reticulum stress.inflammation,and oxidative stress[J].Front Cell Neurosci,2014(8):213-227.
Take the first step of our cooperation邁出我們合作第一步